Posts with tag pca
← Back to all posts
Before end-of-semester madness, I was looking at how shifts in vocabulary usage occur. In many cases, I found, vocabulary change doesn’t happen evenly across across all authors. Instead, it can happen generationally; older people tend to use words at the rate that was common in their youth, and younger people anticipate future word patterns. An eighty-year-old in 1880 uses a world like “outside” more like a 40-year-old in 1840 than he does like a 40-year-old in 1880. The original post has a more detailed explanation.
I wanted to see how well the vector space model of documents I’ve been using for PCA works at classifying individual books. [Note at the outset: this post swings back from the technical stuff about halfway through, if you’re sick of the charts.] While at the genre level the separation looks pretty nice, some of my earlier experiments with PCA, as well as some of what I read in the Stanford Literature Lab’s Pamphlet One, made me suspect individual books would be sloppier. There are a couple different ways to ask this question. One is to just drop the books as individual points on top of the separated genres, so we can see how they fit into the established space. By the first two principal components, for example, we can make all the books in LCC subclasses “BF” (psychology) blue, and use red for “QE” (Geology), overlaying them on a chart of the first two principal components like I’ve been using for the last two posts:
I used principal components analysis at the end of my last post to create a two-dimensional plot of genre based on similarities in word usage. As a reminder, here’s an improved (using all my data on the 10,000 most common words) version of that plot:
One of the most important services a computer can provide for us is a different way of reading. It’s fast, bad at grammar, good at counting, and generally provides a different perspective on texts we already know in one way.
Back to my own stuff. Before the Ngrams stuff came up, I was working on ways of finding books that share similar vocabularies. I said at the end of my second ngrams post that we have hundreds of thousands of dimensions for each book: let me explain what I mean. My regular readers were unconvinced, I think, by my first foray here into principal components, but I’m going to try again. This post is largely a test of whether I can explain principal components analysis to people who don’t know about it so: correct me if you already understand PCA, and let me know me know what’s unclear if you don’t. (Or, it goes without saying, skip it.)